

ChSTU's Learning Materials Preparation Progress

Partner presentation

Serhii Holub, Vadym Oleksiuk

CHERKASY STATE TECHNOLOGICAL UNIVERSITY

EUROPE-VECTORED EDUCATION

List of Developed Courses

Digital Technologies

107 - Data science

Soft Skills and Digital Ethics

- 204 Digital ethics
- 205 Transversality and integrity

Mental Health

• 301 - Mental well-being in terms of digitalization

The Team of Software for Automated Systems Department

Serhii Holub (Head of LM)

Vadym Nemchenko (Databases)

Olexandr Piven (Statistics)

DATA authors SCIENCE

Vadym Oleksuk (Data mining)

NEXT

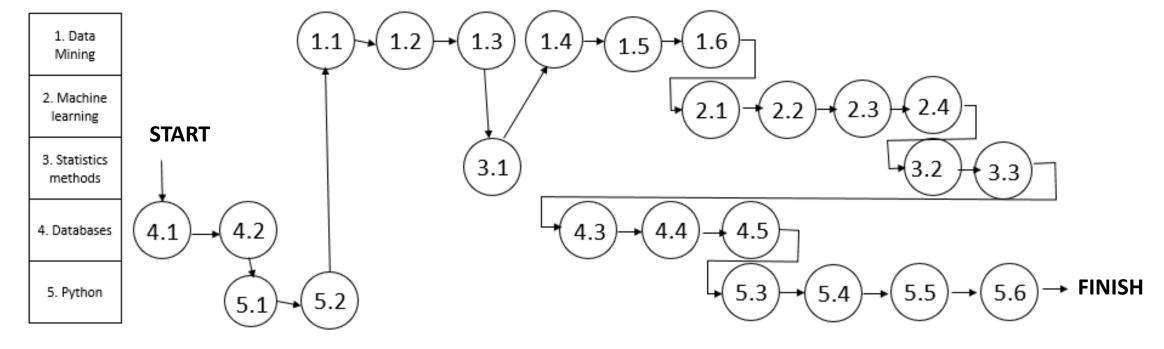
Hryhoriy Zaspa (Machine learning)

Vladimyr Metelap (Python)

Data Science

Learning object type	Number of learning objects	Requirements	Progress
pages of text (1800 characters / 1 page)	37	30	100%
images and tables	<mark>20</mark>	25	80%
videos (2-5 minutes)	13	10	100%
interactive / advanced elements	16	15	100%
worksheets	2	2	100%
self-test questions	56	50	100%
links to external resources (for creating the mind map)	13	10	100%

Data science


Teaching students of non-IT specialties has its own specificity:

"Introduction

Dear reader, when processing data, in most cases, a certain typical sequence of steps is sufficient. It's simple. It's not difficult. We'll teach you.

To make your work easier, you need to learn how to use existing data processing tools. For this, at the start of each task—tasks you'll be paid for—it's essential to identify how it resembles already established problem types.

For solving common tasks, there are already developed computer programs. You'll need to learn how to use these programs. We will teach you to create databases (DB) for these tables (DB) and use the Python programming language to access the necessary tools to automate the processing of observational results."

Data Mining		Machine learning		Statistics methods		Databases		Python	
1.1	Formulating Typical Data Science	2.1	Introduction to Machine	3.1	Statistical processing of	4.1	The concept of a	5.1	Basics of Python for
	Tasks		Learning. Machine Learning		observation results.		database and a database		Data Science
			as part of Data Science.		Evaluation of		management system		
			Machine Learning structure		the suitability of models				
					for use				
1.2	Forming a Data Array for Data	2.2	Classical Machine Learning:	3.2	Statistical models. The	4.2	The relationship between	5.2	NumPy
	Science Tasks		learning with a teacher and		method of least squares		the relational model and		
			without a teacher.				database elements		
			Reinforcement learning						
1.3	Functional and structural	2.3	Tools of machine learning for	3.3	Time series analysis	4.3	Relational databases	5.3	Statistical work on
	description of Data Mining		models. Neural networks.						Python with Pandas
	technology								
1.4	Models of Data Science Tasks and	2.4	Application of machine			4.4	SQL queries	5.4	Visualization of data
	Their Evaluation		learning technologies in						in Python
			everyday life						(Matplotlib)
1.5	Practical Implementation:					4.5	Data warehouses for Data	5.5	ML with TensorFlow
	Intelligent Monitoring Technology						Mining technology		
1.6	Using Python (with Scikit-learn,							5.6	ML with PyTorch
	NumPy, and Pandas libraries)								

Nataliia Khymytsia

PhD, Lviv Polytechnic National University

204. Digital ethics

Learning object type	Number of learning objects	Requirements	Progress
pages of text (1800 characters / 1	10	10	100%
page)			
images and tables	10	10	100%
videos (4–6 minutes)	3	3	100%
interactive / advanced elements	4	4	100%
worksheets	2	2	100%
self-test questions	10	10	100%
links to external resources (for	6	6	100%
creating the mind map)			

Angela Boyko

Prof., Head of Philosophy Department at ChSTU

205. Transversality and Integrity

Learning object type	Number of learning objects	Requirements	Progress
pages of text (1800 characters / 1 page)	5	5	100%
images / graphs / tables	2	2	100%
videos / audios / animations (2-7 minutes)	2	2	100%
interactive / advanced elements	2	2	100%
worksheets	2	2	100%
self-test questions	5	5	100%
links to external resources (for creating the mind map)	2	2	100%

Lyudmyla Vovkochyn

PhD, Associate Professor at Psychology Department at ChSTU

301. Mental well-being in terms of digitalization

Learning object type	Number of learning objects	Requirements	Progress
pages of text (1800 characters / 1 page)	17	17	100%
images and tables	5	5	100%
videos (2–5 minutes)	2	2	100%
interactive / advanced elements	3	3	100%
worksheets	2	2	100%
self-test questions	10	10	100%
links to external resources (for creating the mind map)	2	2	100%

Practical aspects of digital detox, reboot methods, technologies for promoting mental health

For maximum effectiveness, it's recommended to combine digital methods with traditional approaches to mental health support, such as physical activity, social interaction in real life,

and professional psychological help when necessary.

Further research in this field will help to better understand the long-term effects of using digital technologies for mental health and develop even more effective strategies for their application. Pictures shows examples of computer gamification of balance boards.

NEXT

Digital Transformations for Supporting Next-Generation Labour

NEXT

Digital Transformations for Supporting Next-Generation Labour

Thank you for your attention!

